Real-time planning and control: Smarter machines or simpler world

AASS Seminar, Örebro University

Shiyu Zhang 2019.9.19

Contents

- Ph.D. work Human-robot interaction
- Current work Multi-arm coordination
- Future interests
- A little summary Smarter machine or simpler world

Beihang University

Beijing University of Aeronautics and Astronautics (BUAA)

Virtual reality in aerospace application

Traditional flight simulator

Virtual cockpit system

Haptic interaction based on servo-serial manipulator

Detect the human motion and the environment and accordingly **react** to them in **real-time**

Catching flying objects ^[1]

Human–robot collaboration ^[2]

9

[1] Bäuml B et al. Kinematically optimal catching a flying ball with a hand-arm-system[C]//2010 IEEE/RSJ IROS: 2592-2599.
 [2] Ajoudani A et al. Progress and prospects of the human–robot collaboration[J]. Autonomous Robots, 2018, 42(5): 957-975.

Real-time trajectory planning

• Real-time generating new motions for robots to rapidly react to changing external factors

A series of point-to-point trajectory planning problems

- Very short re-planning period T_p
- Each period: need to do the calculation very fast

Point-to-point trajectory planning (joint space)

$$\boldsymbol{X} \to \boldsymbol{C_{opt}} = O(\boldsymbol{X})$$

$$X \rightarrow C_{opt} = \min_{C} F_{X}(C)$$
 Objective function
s.t.

$$C \in \mathbb{R}^{N_{C}}$$
 Optimization parameter
ⁱ $H_{X}(C) = 0, i = 1, 2, ..., N_{h}$ Equality constraints
ⁱ $G_{X}(C) \leq 0, i = 1, 2, ..., N_{g}$ Inequality constraints

• usually **non-linear** and **non-convex**

Input variables X Motion state

• Human factors

.

.

٠

Environmental factors

Trajectory parameters C

- Position $q(\mathbf{C}, t) \in \mathbb{R}^{N_J}$
- Velocity $\dot{\boldsymbol{q}}(\boldsymbol{C},t) \in \mathbb{R}^{N_J}$
- Acceleration $\ddot{\boldsymbol{q}}(\boldsymbol{C},t) \in \mathbb{R}^{N_J}$

Optimization problem

- **Objective function**: safety, rapidity, low power consumption, ...
- **Constraints**: Mechanism limits, time limits, safety, ...

Human-robot interaction > Multi-arm coordination > Future interests > Smarter machines or simpler world

Specific case

 $X \rightarrow C = O(X)$

Input variables

Objective function $F(\mathbf{C}) = \frac{(1 - N_j)}{N_j}$	soft and quick motion $\frac{\alpha}{1}\sum_{j=1}^{N_{j}} (\frac{a^{j}}{a_{max}^{j}})^{2} + \alpha \left(\frac{t_{f}}{t_{max}}\right)^{2}$									
Constraints	Mechanical limits									
	Trapezoidal profile principle									
Equality constraints	Application requirement									
$\frac{1}{2}\omega_{m}{}^{j}(t_{f} + t_{2}{}^{j} - t_{1}{}^{j}) + \frac{1}{2}\omega_{0}{}^{j}t_{1}{}^{j} = q_{f}{}^{j}$ $\omega_{m}{}^{j} = \omega_{0}{}^{j} + a^{j}t_{1}{}^{j}$ $(\omega_{m}{}^{j} - \omega_{0}{}^{j})(t_{f} - t_{2}{}^{j}) = \omega_{m}{}^{j}t_{2}{}^{j}$										
									Inequality constraints	
									$0 \le a^j \le a_{max}{}^j$	
$\max(0, \omega_0{}^j) \le \omega_m{}^j \le \omega_{max}{}^j$										
	$t_1^j \leq t_2^j$									

 $0 < t_f \leq t_{max}$

Challenge

• Efficiently solve the complex optimization problems

Methods

- Learning for optimization
- Non-convex transformation
- Joint decoupling

Method 1: Learning for optimization

Method 1: Learning for optimization

Learning optimization model

 $\mathcal{L}(D, R, O)$

- D Database
- R Regression method
- *O* Parameter refinement

Performance evaluation indices

- Feasible success rate $R_s = \frac{N_{r1}}{N_r}$ Feasibility
- Learning time Efficiency $T_L = T_R + T_Q$
- Cost increase rate
 Accuracy

 $e_F = \frac{1}{N_r} \sum_{r=1}^{N_r} \left| \frac{F_p^{\ i} - F_a^{\ i}}{F_a^{\ i}} \right|$

Another challenge: Non-convex optimization model

- Has multiple local minima
- An arbitrary initialization could not guarantee the **global solution**
- Learned initialization is helpful to improve the accuracy and efficiency, but there's still no guarantee

Method 2: Non-convex transformation

$$\mathbf{X} \to \mathbf{C} = O(\mathbf{X})$$

Input variables

$$\boldsymbol{X} = (\boldsymbol{q}_f, \boldsymbol{\omega}_0) \in \mathbb{R}^{2N_f}$$

 $\boldsymbol{q}_f = \boldsymbol{q}_c - \boldsymbol{q}_0$

- $\boldsymbol{q_0} \in \mathbb{R}^{N_J}$ Initial configuration
- $\boldsymbol{q_c} \in \mathbb{R}^{N_J}$ Goal configuration
- $\boldsymbol{\omega_0} \in \mathbb{R}^{N_J}$ Initial velocity

Objective function

Constraints

Inequality constraints

$$0 \le a^{j} \le a_{max}{}^{j}$$
$$\max(0, \omega_{0}{}^{j}) \le \omega_{m}{}^{j} \le \omega_{max}{}^{j}$$
$$t_{1}{}^{j} \le t_{2}{}^{j}$$
$$0 < t_{f} \le t_{max}$$

17

Human-robot interaction > Multi-arm coordination > Future interests > Smarter machines or simpler world

Unique local minimum Method 2: Non-convex transformation Guarantee a global solution Converge more efficiently with **learned initializations Optimization parameter** Optimization parameter $\boldsymbol{C} = (a^1, \dots, a^{N_J}, t_f) \in \mathbb{R}^{N_J + 1}$ $\boldsymbol{C} = (\omega_m^{1}, \dots, \omega_m^{N_J}, t_f) \in \mathbb{R}^{N_J + 1}$ $a^j \in [0, a_{max}^j]$ $\omega_m^j \in [\max(0, \omega_0^j), \omega_{max}^j]$ $t_f \in [0, t_{max}]$ $t_f \in [0, t_{max}]$ simple and intuitive **Objective function Objective function** $F(\mathbf{C}) = \frac{(1-\alpha)}{N_I} \sum_{i=1}^{N_J} \left(\frac{a^j}{a_{max}^j}\right)^2 + \alpha \left(\frac{t_f}{t_{max}}\right)^2$ $F(\mathbf{C}) = \frac{(1-\alpha)}{N_{J}} \sum_{i=1}^{N_{J}} (\frac{a^{j}}{a_{max}^{j}})^{2} + \alpha \left(\frac{t_{f}}{t_{max}}\right)^{2}$ **Inequality constraints** Inequality constraints $\omega_m{}^j \leq \omega_{max}{}^j$ $q_f{}^j - \omega_m{}^j t_f < 0 \ (0 < a^j)$ $\omega_0^j \leq \omega_m^j$ $a^j - a_{max}{}^j \le 0$ Where $2\omega_m{}^j - \omega_0{}^j - a^j t_f \le 0 \ (t_1{}^j \le t_2{}^j)$ $\frac{(a^{j}t_{f} + \omega_{0}{}^{j}) - \sqrt{(a^{j}t_{f} + \omega_{0}{}^{j})^{2} - 2(\omega_{0}{}^{j})^{2} - 4q_{f}{}^{j}a^{j}}}{2}$ where $a^{j} = \frac{(\omega_{m}^{j})^{2} + (\omega_{0}^{j})^{2}/2 - \omega_{0}^{j}\omega_{m}^{j}}{\omega_{m}^{j}t_{c} - \alpha_{c}^{j}}$ Extremely complex inequality constraints **Non-convex** optimization model Solutions highly rely on initializations

Still didn't reach the real-time requirement

System sampling time: 4ms

CALCULATION TIME (MS)

- Computational efficiency greatly limited by high dimension of the problem
- The increase of the dimension of DOFs will lead to the super linear increase of computational complexity

Method 3: Joint decoupling

Coupled optimization

 $\boldsymbol{X} \to \boldsymbol{C} = O_{cpl}(\boldsymbol{X})$

Optimization parameter classification

 $\boldsymbol{C} = (\boldsymbol{C_J}^1, \dots, \boldsymbol{C_J}^{N_J}, \boldsymbol{C_{cou}})$

Coupling parameter

• apply to **all of the joints** simultaneously

Joint parameter

- only appear in the expression of the **certain joint**
- not only related with the certain joint, affected by other joints indirectly through the coupling parameter

Finding an appropriate coupling parameter

• Learn a feasible and near-optimal coupling parameter

2

Method 3: Joint decoupling

Coupled optimization

Optimization parameter

$$C = (\omega_m^{1}, \dots, \omega_m^{N_J}, t_f) \in \mathbb{R}^{N_J + 1}$$
$$\omega_m^{j} \in [\max(0, \omega_0^{j}), \omega_{max}^{j}]$$
$$t_f \in [0, t_{max}]$$

Objective function

$$F(\boldsymbol{C}) = \frac{(1-\alpha)}{N_J} \sum_{j=1}^{N_J} (\frac{a^j}{a_{max}^{-j}})^2 + \alpha \left(\frac{t_f}{t_{max}}\right)$$

Inequality constraints

$$q_{f}{}^{j} - \omega_{m}{}^{j}t_{f} < 0 \ (0 < a^{j})$$
$$a^{j} - a_{max}{}^{j} \le 0$$
$$2\omega_{m}{}^{j} - \omega_{0}{}^{j} - a^{j}t_{f} \le 0 \ (t_{1}{}^{j} \le t_{2}{}^{j})$$

where

$$a^{j} = \frac{\left(\omega_{m}^{j}\right)^{2} + \left(\omega_{0}^{j}\right)^{2}/2 - \omega_{0}^{j}\omega_{m}^{j}}{\omega_{m}^{j}t_{f} - q_{f}^{j}} \bullet \text{NJ+1 dimensional} \\ \bullet \text{ Needs iterative solver}$$

Optimization parameter classification $C_{cpl} = t_f \in \mathbb{R}$ $C_I^{\ j} = \omega_m^{\ j} \in \mathbb{R}$

Joint-independent optimization

$$(q_f^{j}, \omega_0^{j}, t_{syn}) \rightarrow \omega_m^{j} = O_{ind}^{j}(\omega_m^{j})$$

Objective function

$$F^{j}(\omega_{m}{}^{j}) = a^{j} = \frac{(\omega_{m}{}^{j})^{2} + (\omega_{0}{}^{j})^{2}/2 - \omega_{0}{}^{j}\omega_{m}{}^{j}}{\omega_{m}{}^{j}t_{syn} - q_{f}{}^{j}}$$

Constraints

$$\begin{aligned} \max(\omega_0{}^j, 0) &\leq \omega_m{}^j \leq \omega_{max}{}^j \\ q_f{}^j - \omega_m{}^j t_{syn} &< 0 \; (a^j > 0) \\ a^j - a_{max}{}^j &\leq 0 \\ 2\omega_m{}^j - \omega_0{}^j - a^j t_{syn} &\leq 0 \; (t_1{}^j \leq t_2{}^j) \end{aligned}$$

• 2 dimensional

• Could be analytically solved

Method 3: Joint decoupling

Haptic interaction demo

Multi-arm coordination

AutoBoomer - Automated Drill Planning for Multiple-Boom Rigs in Underground Mining

Multi-arm coordination

AutoBoomer - Automated Drill Planning for Multiple-Boom Rigs in Underground Mining

Collision and deadlock free motion planning for multiple robot arms in shared workspace

Assumption

• The goal for each robot has already been assigned

Objective

• To bring all the robots to goal configurations in **minimal time** without collisions

Challenge

• Dealing with the interference of each other, avoiding collisions and deadlocks

Extend coordination_oru framework* to robot arms

Hard to get the **accurate boundary** of collision region and whether a configuration is in the region

- Complex geometric shape
- Transformation between joint space and task space

^{*} Pecora F, Andreasson H, Mansouri M, et al. **A Loosely-Coupled Approach for Multi-Robot Coordination, Motion Planning and Control** [C] //Twenty-Eighth International Conference on Automated Planning and Scheduling. 2018.

Modifications and adaptation to robot arms

All the possible configurations

Configurations along an initial trajectory

Human-robot interaction > Multi-arm coordination > Future interests > Smarter machines or simpler world

Coordination Matrix Transform the complex geometry to **linear space**

	R2 -	- rob	ot w	ith lo	ower	prio	rity					
	C1	C2	•••	(equ	ıal tir	me ir	nterv	al)				
C1	0	0	0	0	1	1	1	1	1	1	1	0
C2	0	0	0	0	1	1	1	1	1	1	1	0
:	0	0	0	0	0	1	1	1	1	1	0	0
	0	0	0	0	0	0	1	1	1	1	0	0
	0	0	0	0	0	0	1	1	1	1	0	0
	0	0	0	0	0	0	0	1	1	0	0	0
	0	0	0	0	0	0	0	1	1	0	0	0
	0	0	0	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0

R1

robot with higher priority

collision between two configurations

no collision between two configurations

Collision-free region

0

Critical section

Boundary

29

Coordination Matrix

- **Collision**: Diagonal elements
- Avoid collision : Stretch/ Add columns
- **Deadlock**: Full "0" route from start to end
- Change priority: Transpose

•

R2 – robot with lower priority

C1 C2 ... (equal time interval)

Coordination process

Future challenges

- Velocity profile for each joint changes reference configuration changes
- More than 2 robots
- Change path/ goal
- Non-void workspace
- Long duration operation
- Learn cooperative pattern
- ...

Applications

Exploring the remote places

Underground mining ^[1]

South pole station construction ^[2]

On-orbit service^[3]

[1] Epiroc https://www.epiroc.com/

[2] Mega Structures: South pole station

[3] DARPA Robotic Servicing of Geosynchronous Satellites (RSGS) https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites

Human-robot interaction > Multi-arm coordination > Future interests > Smarter machines or simpler world

Challenges

- Large size
- Harsh working environment
- Long-duration operation

 VINNOVA

 KK-stiftelsen

Technologies

- Real-time planning and control based on perception
- Multi-robot systems

٠

...

- Low level control with physical contacts
- Modeling and control of novel designed field mechanisms

Basis and Foundation

- Modeling and efficient algorithms for complex real-world problems
- Safe and reliable learning techniques for planning and control

Human-robot interaction > Multi-arm coordination > Future interests > Smarter machines or simpler world

Smarter machines

- Reuse previous experience
- Feed robot knowledge

- Non-convex convex
- Coupled decoupled
- Non-linear linear

* When the **linear-programming model** and **simplex algorithm** first delivered by **George Dantzig** at a meeting, it was criticized by a noted scholar, **Harold Hotelling**,

"But we all know the world is nonlinear."

At this moment, **John von Neumann** replied for him, "The speaker titled his talk linear programming and carefully stated his axioms. If you have an application that satisfies the axioms, well use it. If it does not, then don't."

Fortunately for the world, many of its complexities can in fact be described in sufficient detail by linear models.

36

The episode is later summed up nicely by a cartoon hanging outside Dantzig's office. The caption reads,

Happiness is assuming the world is linear.

Human-robot interaction > Multi-arm coordination > Future interests > Smarter machines or simpler world

Thank you!